OLD CONCEPTS,

NEW TOOLS

ut, The Terry Thomas could represent the future of energy-efficient buildings in areas with mild climates such as the Northwest. Advanced building simulation tools allowed the building team to design the optimal environment for natural ventilation and daylighting, while maintaining thermal comfort goals and individual control.

The project integrates sustainable strategies from each discipline involved in the building design. In addition to passive strategies, the building incorporates automated controls such as motorized louvers controlled by CO₂ sensors during the heating season and thermostats in the cooling season, and automated external blinds controlled by meteorological conditions.

Designing for Well-Being

One primary project goal aimed to create an environment that enhances occupant well-being by incorporating daylighting, natural ventilation and individual control of the indoor environment.

Natural ventilation and daylighting improve the indoor environment and the energy efficiency of the building. Because these goals were set at the beginning, these passive strategies informed the building’s design. For example, a center courtyard enhances natural ventilation and improves daylight, and provides a valuable communal space. This integration made these features more cost effective, and strengthened the case for having them in the design. Each feature was an interdependent piece of a jigsaw puzzle, and the picture required each piece to make sense.

These design considerations led to the concept of using narrow floor plates, prompting a “square doughnut” building design. Shading, daylighting, building form and structure, and other load reduction strategies are critical to the successful implementation of a passive cooling strategy.

Other design features used to make the building more efficient include an easily accessible outdoor staircase in the courtyard, which encourages occupants to use the stairs. A triple net lease agreement in which the tenant agrees to pay expenses usually covered by the owner, such as real estate taxes, building insurance and maintenance expenses, also provided a financial incentive to reduce operational energy use for the building.

The building team used high-end simulation tools to test how various design concepts impact thermal comfort and daylighting. Shading features were designed early in the project to cut off the direct solar gain and keep the internal temperature within the specified comfort range. These features had to work in conjunction with the prescribed glazing area, type of glazing and area of operable windows.

Thermal modeling, which predicts internal space temperatures, was

Designing a modern commercial office building without a mechanical cooling system might sound like a step backwards in building technology. The “square doughnut” design of The Terry Thomas, a Seattle Class A commercial office building, is actually reminiscent of 1920s architecture.

The Terry Thomas, a commercial building in Seattle, uses shading and daylighting to reduce heat gain. The second floor north office is shaded on the south facade facing the courtyard by the automated external blinds. The high internal reflectance, exposed ceiling with no ductwork, and large internal partitions allow for effective daylighting.
used iteratively to inform the design at each stage and to verify that the specifications worked.

Sustainable Strategies

Shading. In the Pacific Northwest, shading may be used to reduce cooling peak load, and, as in The Terry Thomas, shading can become the basis for the removal of the entire mechanical cooling component from the building. Since solar gain forms the majority of the cooling load in a perimeter dominated building, removing it can make it feasible to keep the internal temperature comfortable without the use of mechanical cooling.

Every floor of each façade orientation (courtyard and exterior) was analyzed separately using thermal modeling to determine the optimum shading strategy to reduce solar gain and glare. Dynamic and fixed external shading to stop the solar heat gain before it enters the space is the primary strategy used to reduce load. Any heat that does make it in is removed using natural ventilation.

Dynamic shades were recommended where possible to optimize daylight during cloudy days and when the sun was not directly shining on the façade. The east and west lower sun angles were challenging to shade while also preserving the views and daylight. For these façades, the primary strategy involves fixed exterior glass shades or “sunglasses.” The angle and shading coefficient of these shades are fine-tuned to meet the needs for daylighting, solar reduction and glare reduction. The various facades require different shading strategies. The east and west external façades have punched screenless windows, with “sunglasses” consisting of custom-designed tinted glass and steel shades. The northeast, some east and west windows, and the south façade facing the courtyard use dynamic external venetian blinds. A rooftop sensor measures the light level and sun angle, and automatically adjusts the blinds as necessary. The

Thermal Modeling

Thermal modeling was conducted during design to determine how passive strategies would affect internal temperatures for all spaces, including the third-floor conference room, as shown in the graph. The primary strategies modeled included shading, daylighting, glass properties, increased operable window area and night purge cooling for better flush out. The conference rooms are the most challenging to cool due to their higher internal load and because they are enclosed for privacy. The architecture firm for the project, also the building’s primary tenant, allows employees to wear shorts on the days when internal temperatures top 80°F.

B U I L D I N G S E C T I O N L O O K I N G S O U T H

Above: An initial cartoon sketch shows the essential passive features required to ventilate the building without mechanical cooling. The central courtyard acts as a chimney, drawing warmer air through the floors and up through the courtyard.

Right: The Terry Thomas is the first fully naturally ventilated Class A commercial office building built in the Puget Sound region in decades. The Northwest climate makes it possible to use natural ventilation along with other passive strategies to meet thermal comfort and energy goals. Located in the growing South Lake Union neighborhood, the building is served by several forms of transportation, including a streetcar line. Bike storage and showers are available to encourage employees to bike to work.

This three-dimensional computer model of the north façade shows the areas that would receive direct sunlight. The model helped designers choose automated external blinds for the south-facing courtyard windows. Modeling of the sunlight angles at various times of the day and year also helped determine optimal angles for the glass sun shades, the number of shades (one versus two) and the shades’ distance from the building.
How can UVC save money, energy & the environment?

Reap the green with Steril-Aire and count the savings.

Install UVC Emitters™ in the HVAC system for clean, green solutions that will improve your building and help your bottom line.

Temperature Analysis: Air Temperature

This daily temperature profile from the thermal analysis shows the performance of the fourth floor open office on a (1% cooling design temperature) typical peak day. Since the solar gain is the largest portion of the cooling load, blocking it and removing internal heat gain via good airflow, cross ventilation and night purge as needed eliminates the need for active cooling.

A Climate for Natural Ventilation

The Seattle climate, with few days above 75°F and relatively low wet-bulb temperatures during the cooling season, lends itself to passive cooling. Natural ventilation can achieve indoor conditions that satisfy the adaptive thermal comfort model (ASHRAE Standard 55), which refers to "naturally conditioned spaces." It is based on a relationship of indoor or acceptable temperature ranges to outdoor climatological characteristics.

Typical Meteorological Year (8 a.m. to 6 p.m.)

- **Cooling Design Temperature**
 - Dry Bulb: 80.1°F
 - Wet Bulb: 65.6°F

Sustainable Features

- **Water Conservation:** Storm water drainage system and holding tank, low-flow fixtures, waterless urinals, dual flush water closets; 54% water use savings according to LEED baseline
- **Recycled Materials:** Recycled steel, aluminum and fly ash used in construction; 93% of the existing, two-story building was recycled or salvaged; 98.8% of the construction waste was recycled
- **Daylighting:** Shallow floor plate and open office plan increase the effectiveness of natural lighting, which in turn reduces internal heat gain.
- **Artificial Lighting:** Daylighting reduces the need for artificial lighting, which in turn reduces internal heat gain via good airflow, cross ventilation and night purge as needed eliminates the need for active cooling.
- **Passive Cooling:** Operable windows, automated louvers, high ceilings, a shallow floor plate, and shading; a central court acts as a chimney, drawing warmer air through the floors and up through the courtyard.
- **Other Sustainable Features:** Locally manufactured windows, storefront and metal exterior cladding; minimal use of interior finish materials; castellated beams reduce the quantity of steel and encourage air movement.

Natural Ventilation

Cooling and ventilation for the building is provided passively, and radiant hydronic baseboards provide the heating for the building perimeter.

Daylighting reduces the need for artificial lighting, which in turn reduces internal heat gain.

The center courtyard, narrow floor plate and open office plan increase the effectiveness of natural ventilation by enabling cross ventilation. Louvers located near the ceiling of each floor elevation, open ceilings, castellated beams (beams split lengthwise and re-welded, creating hexagonal holes; see photo, p. 26) and operable windows all along the building perimeter are designed to optimize the natural ventilation system.

Motorized louvers allow for night purge and are used in conjunction with occupant-controlled operable windows. Demand control ventilation with CO2 sensors controls the motorized exterior louvers during heating months to reduce unnecessary ventilation loads.

The building's completely passive cooling strategy (i.e., natural ventilation without forced air fans) eliminates the cooling system and fan energy consumption for normally occupied spaces in the building. However, reducing the energy consumption is only one benefit of natural ventilation. Since ductwork is not needed, ceilings are higher, enhancing daylighting.

Natural ventilation also eliminates mechanical equipment including chillers, pumps, ductwork, piping and automated shades reduce solar gain and optimize daylighting during overcast conditions.
and fans. The cost savings were used to pay for various passive strategies required to successfully implement natural ventilation.

One disadvantage of natural ventilation is outside noise. However, the owner and architect (also the building’s anchor tenant) agreed that outdoor sounds were preferred to a mechanical buzz.

In practice, the exterior sounds have been distracting, mostly during meetings. So, the occupants close the windows when necessary. This example illustrates why it is important that users have the ability to control their environment.

Another disadvantage of natural ventilation is the inability to provide heat recovery since no central air intake source exists. CO₂ sensors control the louvers to allow for minimum ventilation.

The basis of design for thermal comfort consists of a maximum acceptable number of hours within certain indoor space temperature ranges. The ranges specified by the owner are: 75°F to 80°F: 150 hours; 80°F to 85°F: 50 hours; and ≥85°F: 20 hours.

Thermal Analysis. The effect of natural ventilation as a means of passive cooling was modeled using thermal analysis. This iterative analysis conducted early in the design process determined the minimum number of operable windows and areas that would need shading.

Hourly temperatures in all spaces were determined using the thermal model. Trial runs with varying shading, operable windows, flush out times and glass specifications helped establish minimum requirements for the spaces and the added benefit that could be achieved with each strategy. As the design progressed, various permutations and combinations of the design were modeled to determine the most effective package with regards to design, energy and budget.

<table>
<thead>
<tr>
<th>Window Type</th>
<th>Insulation Type</th>
<th>Insulation Amount</th>
<th>U-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Reflective</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

The internal shade system combined with operable windows and automated louver windows allow for cross ventilation in the summer.

The external shades outside of this north/northeast-facing break room on the third floor retract as the morning sun moves overhead or during overcast conditions. The four-story building’s shading and natural ventilation strategies (in place of an HVAC system) help it perform 42% better than ASHRAE/IESNA Standard 90.1-2004.

The thermal analysis results demonstrated that the final building design would satisfy the thermal comfort criteria for all of the occupied building spaces. The thermal analysis predicted that the interior space temperatures would exceed 80°F for less than 70 hours of the year.

The Typical Meteorological Year version two (TMY2) weather data for Seattle indicates that 83 hours per year the outdoor dry-bulb temperature is outside of the extended thermal comfort criteria for naturally ventilated spaces in ASHRAE Standard 55-2004, Section 5.3. These extended thermal comfort criteria correspond to approximately 80°F, based on mean monthly outdoor temperatures from the same TMY2 weather data.

This rough comparison demonstrates that the building has been designed with appropriate envelope and thermal mass properties to maintain comfort in the indoor spaces for more hours than the outdoor ambient conditions.

Occupant comfort is further increased by the ability to control multiple operable windows located near each workstation. Hallways are located along the building perimeter, and workstations are located in the interior to reduce the likelihood of “window wars” between individual occupants.

Energy Analysis. Energy simulations predicted that the building would perform 33% better than a baseline building defined using the Performance Rating Method (PRM) in ASHRAE/IESNA Standard 90.1-2004. The building actually performed 42% better according to 2009 utility data.

The annual building energy cost is $0.53/ft²·yr. According to data published by the Building Owners and Management Association (BOMA), gross utility costs for Seattle office buildings smaller than 100,000 ft² average $1.98/ft²·yr. While that cost includes water, sewer, and garbage in addition to utilities, the majority of the building utility costs are associated with energy use. The annual energy costs for the Terry Thomas building are
The internal courtyard allows for effective cross ventilation in the summer, improved daylighting and a communal space for outdoor activities. The easily accessible external stair encourages occupants to use the stairs.

Chris Meek, UW Integrated Design Lab

HPB.hotims.com/30305-13

THE DIFFERENCE IS IN THE CURVE

Lower Pressure Drop
Lower Energy Costs
Lower Operating Costs

Columbus Industries is concerned with the increased consumption of the earth’s natural resources to satisfy our demand for energy. Our commitment to performance engineered products has led us to develop the industry’s most advanced and innovative new line of air filtration products.

True lower operating costs can only be achieved by using filters that combine lower initial pressure and higher dust holding capacity. CI meets this challenge with innovative filters that provide lower initial pressures and higher holding capacities. With these combined performance characteristics, it is easy to see why, with Columbus Industries, the Difference Is In The Curve!

Performance Engineered Air Filter Products

Columbus Industries, Inc.

2938 State Route 752 • PO.Box 257 • Ashville, Ohio 43102-0257
Phone: 740.383.2562 • Fax: 740.383.4622
www.cabl.com • E-mail: c@cabl.com
performing at least as well as predicted by the energy simulation. Much of the energy savings stem from the natural ventilation system, which eliminates cooling energy and reduces fan energy. In addition, daylighting and efficient lamps reduce lighting energy consumption. Efficient pumps and the heating system's efficient boilers also contribute to energy savings.

Daylighting

The thermal and daylight modeling were done iteratively, informing each other. The design sought to balance two goals: remove glare and provide ample solar heat that would impede natural ventilation, and provide ample daylighting. The automated external venetian type blinds on the north, east and south facades have a dual motor so that the daylighting upper portion of the blind can be controlled separately from the viewing portion of the blind.

Post Occupancy

After working in The Terry Thomas building for a year, the anchor tenant (architecture firm Weber Thompson) was asked to participate in an anonymous survey regarding the building environment and the occupants’ comfort level. A summarized version of the survey, which was initiated by a third party, is available at a third party.

Airtightness Testing - Not Just for Homes Anymore

Airtightness testing of homes has been around for more than 20 years. Various energy programs and fluctuating energy bills have provided homeowners an incentive to improve the airtightness of their homes. Energy tax credits can also be received by the homeowner but only if the house airtightness has been verified that it is less leaky after remodeling than before.

In England, airtightness testing of buildings over 10,000 square feet was the first regulation initiated to reduce energy consumption. Efforts to make commercial buildings more energy efficient in the U.S. has only recently been incorporated into various “green” initiatives. Tests of commercial buildings show that they tend to be more leaky than the average house, based on air leakage per square foot of surface area. That means that commercial buildings are less energy efficient than the average house.

To measure the actual airtightness of a large building means more air is needed to maintain a reasonable test pressure. The Energy Conservatory, a leader in airtightness testing, has kits available to directly measure more than 18,000 cubic feet per minute of air leakage. Multiple kits and fans can be used simultaneously to generate more air for accurate and reliable measurements of air leakage for testing before and after retrofitting.

For more information on multi-fan systems contact The Energy Conservatory at 612-827-1117 or visit our website at www.energyconservatory.com.
http://weberthompson.typepad.com/wt_weblog/page/2/

All of the survey participants rated the indoor temperature as acceptable or better and said the airflow/circulation was good or excellent. The survey also showed that even though 100% of the occupants knew how to successfully adjust the airflow circulation using operable windows, only 53% were able to adjust the radiant heaters successfully.

The survey showed that 96% of the occupants thought the daylighting was excellent, and 59% thought the glare quality was good or excellent, but 23% thought the glare on their computer screens was poor. The survey indicated that 96% of the occupants were satisfied or very satisfied with overall privacy within the context of an open office floor plan.

The occupants, who were also the architects for the project, have reported anecdotal evidence of fewer flu cases since they have occupied The Terry Thomas. They also state that even though surrounding exterior noise can be a problem, they enjoy the lack of building mechanical noise.

The occupants also reported some problems, such as drafts when the dampers open on cold days in response to CO₂ levels, odor from waterless urinals and glare on computer screens from the windows. These issues are being addressed as the building is fine-tuned.

ABOUT THE AUTHORS

Amarpreet Sethi, LEED AP, is a sustainable building analyst at Stantec.

Tom Marseille, P.E., LEED AP, is a senior vice president at WSP Flack & Kurtz. He was previously a principal at Stantec.

BUILDING TEAM

Building Owner/Representative
First Western Development

Architect
Weber Thompson

General Contractor
Rafn Co

Mechanical Engineer, Energy and Thermal Modeling
Stantec

Structural, Civil Engineer
DCI Engineers

Landscape Architect
Integrated Site Design

Daylighting Modeling, Integrated Design Lab, University of Washington

Sustainable Building Coordinator
Seattle City Light

YASKAWA ELECTRIC AMERICA, INC.
1-800-YASKAWA YASKAWA.COM
HPB.hotims.com/30305-49

Need to stimulate your company’s recovery? Our E7 family of HVAC drives lower operating costs, decrease maintenance demands and increase client comfort. Your budget also will stretch further when using Yaskawa HVAC drives.

Stimulate your bottom line with Yaskawa’s E7 HVAC Drives. Call Yaskawa today.